TOWARDS MATHJAX V3.0

PETER KRAUTZBERGER, DAVIDE CERVONE, AND VOLKER SORGE

EXECUTIVE SUMMARY

Since the release of v1.0 in 2010, MathJax has become the de-facto standard for
rendering mathematics on the web. While MathJax’s various input and output
components have evolved over the years, MathJax’s core component remained fixed.
Today, both MathJax and browser technology have reached a point where an ex-
tensive redesign of MathJax’s core component will enable significant improvements
and ensure the long-term viability of MathJax.

The core work of the redesign will revolve around modularity. MathJax’s original
design needed to provide its own, specialized framework to tackle the challenges
specific to mathematical rendering across all browsers (in 2010). Since then, the
modularization of web technology has made much progress while MathJax’s newer
components require less complexity from its core component. The timing is right
for improving MathJax’s module structure and APIs. This change should ensure
MathJax will better serve today’s highly complex web development ecosystem. A
positive side effect should also be performance improvements and the ability for
developers to re-use individual components efficiently.

The redesign must be governed by MathJax’s mission to provide the best tools for
the mathematical and scientific community on the web. A key consideration is one
of MathJax’s original goals: to spur native MathML implementations in browsers.
Thanks to MathJax, millions of users benefit from the advantages of MathML on
the web every day, with the MathJax CDN alone serving over 4.5 million daily
visitors. Unfortunately, browser vendors continue to lack interest in implementing
MathML while volunteer efforts have proven unreliable and of limited scope.

Depending on whether or not we keep this original goal, we considered two direc-
tions to guide the redesign. If native browser support for MathML remains a core
goal, we believe MathJax should focus on becoming a modern polyfill, i.e., enable
MathJax to leverage partial MathML implementations in browsers and become as
invisible as possible to developers. If browser support for MathML ceases to be
a core goal, we believe MathJax should focus on perfecting its transformation of
MathML into HTML/CSS (and into SVG), i.e., MathJax should focus on enabling
a rendering that is fully equivalent to MathML and can be generated on both server
and client.

After careful consideration and extensive feedback from the MathJax sponsors, the
MathJax Steering Committee, as well as various experts in the field, the MathJax
Consortium follows the recommendation of its development team to pursue the
second direction as the guiding principle for the planned revision.

1

2 PETER KRAUTZBERGER, DAVIDE CERVONE, AND VOLKER SORGE

To ensure that we achieve our goals, MathJax is forming a Technical Committee of
developers. This committee is being recruited from the MathJax sponsors as well
as experts from the community. In addition, the redesign will require significant
resources, including an additional core developer.

We are grateful for the unanimous support from our MathJax sponsors to support
this effort and ensure MathJax will continue to provide the best tools for math and
science on the web.

INTRODUCTION

This August marked the fifth anniversary of the release of MathJax v1.0. In the
past five years, MathJax has become the standard solution for publishing mathe-
matics on the web, growing from a one-developer project to a mature project with
a dedicated team, multiple contributors, and a rich ecosystem built around it. To-
day, the MathJax CDN serves 4.5 million unique visitors each day and is used on
thousands of websites, including over 400 of the top 1 million websites according
to libscore.com.

We find ourselves in a very different World Wide Web today. With its success,
the expectations towards MathJax have grown. When MathJax started, it was
considered a temporary solution, to bridge the time until browsers implemented
MathML alongside HTML5. Today, that moment seems further away than it was
5 years ago with the two leading browsers (Internet Explorer and Chrome or 55-
75% of the market) having no plans to support MathML, even actively removing
support for MathML or for plugins that could compensate.

Moreover, web development has changed drastically over the past five years, both
in terms of tools (libraries, frameworks, platforms) and standards (HTML5, Web
APIs, ECMAScript 2015 etc), with the former often influencing the latter. This
has changed the requirements for MathJax within modern web developer workflows
and also the expectations towards MathJax. In short, MathJax is showing its age
because development had to focus on maintenance and conservatively extending
functionality.

This paper discusses the risks and benefits of overhauling a significant portion of
MathJax to enable another 5 years of successful development and delivery.

BACKGROUND

Making extensive changes to any piece of software carries risks that need to be
outweighed by the opportunities provided. This is especially true when considering
changes that are not fully backwards compatible. As we are considering significant
(breaking) changes to MathJax’s core component, we also face a question of tim-
ing. MathJax development began at a point where web technology improvements
were ideal for re-designing its predecessor jsMath. Given the responsibility towards
MathJax’s community and MathJax’s donors, we need to ensure we have reached
a similarly opportune moment in terms of existing and nascent technologies as well
as in terms of our approach towards leveraging them for long term sustainability
of the project.

http://libscore.com/#MathJax
https://en.wikipedia.org/wiki/Usage_share_of_web_browsers#Summary_tables
https://en.wikipedia.org/wiki/Usage_share_of_web_browsers#Summary_tables

TOWARDS MATHJAX V3.0 3

MathJax. 5 years on the web is an eternity. For an unfair comparison, Math-
Jax is roughly the same age as jQuery, NodeJS, or AngularJS, all of which have
passed through several iterations since. Naturally, these projects have a much larger
contributor base and financial backing. But the extensive changes in their design
indicate how drastically the web development landscape has changed.

Still, MathJax has seen major improvements over the past 5 years. Thanks to its
modular system, many components have seen a partial or complete redesign. Ad-
ditionally, the advantage of modularity is that instead of redesigning a monolithic
piece, we could develop new components (inputs, outputs, and their extensions)
which provided the same effect as re-writing an existing component while simulta-
neously keeping older solutions available (and often improved). However, there are
some limitations within MathJax that cannot be resolved this way.

At the core of the overhaul we are proposing lies MathJax’s core component which
has not been revised since v1.0.

Until very recently, a major overhaul of MathJax’s internals would have had ex-
tremely limited scope. That is, much of the core component was simply neces-
sary for MathJax to provide high-quality layout. However, the progress we made
in 2014/15 with the new CommonHTML output alongside improvements in the
browser landscape provide us with an opportunity to redesign several aspects of
MathJax’s core component and its features. Simply put, the internals have begun
to hold MathJax development back and we believe their disadvantages are now
outweighing their advantages.

Such an overhaul will include many changes that will break current behavior such
as changing APIs or removing outdated components. A good example is Math-
Jax’s original rendering component, the HTML-CSS output. This original output
component was designed to work reliably on IK6+ and all other browsers and plat-
forms that were current in 2009. This forces MathJax to workaround significant
limitations, including erratic layout behavior, unreliable webfont integration, and
low level of JavaScript features. Not surprisingly, much of MathJax’s infrastructure
was required for the HTML-CSS output given these restraints on old (now ancient)
browsers; changing the core component will result in the removal of the HTML-CSS
output while the new CommonHTML output remains as new default. Similarly,
changes to the internals will change MathJax’s APIs extensively. Of course, it is
important that any breaking changes (in particular, feature deprecation) are com-
pensated by improvements.

Equally important to us is that MathJax is not just another software development
project. MathJax is not developed for a particular company or organization but
instead we are driven by a mission shared by our managing partners as well as our
sponsors: to provide the best tools for the mathematical and scientific community
on the web. At the core of MathJax has always been MathML, the web standard
for math and science. One goal of MathJax was to break the vicious cycle of
“no browser support = no MathML on the web = no need for browser support
= ...”7. Despite MathJax’s success, we do not seem to be any closer to native
MathML support today than we were 5 years ago. In fact, we seem further away
than ever.

4 PETER KRAUTZBERGER, DAVIDE CERVONE, AND VOLKER SORGE

Browsers in 2015. The situation of native implementations can only be described
as confusing.

e IE/Edge lists MathML as “not currently planned” on its roadmap while
removing support for plugins such as MathPlayer that could compensate.

e Firefox/Gecko’s MathML implementation has been the work of volunteers
over many years and Mozilla engineers are supportive of these volunteer
efforts. In 2014, a crowd-funded volunteer effort made some progress but
unfortunately lasted only 6 months; no substantial progress has been made
since.

Gecko MathML support is incomplete but in terms of plain feature cover-
age not too far from MathJax (and ahead in terms of bidirectional layout).
However, layout quality is sometimes sub-par or unreliable while common
Web APIs are often not supported. It can be used in production but often
requires knowledge about its specific implementation quirks.

e Safari/WebKit has seen three attempts by three successive volunteers to
move its implementation forward. These volunteers worked alone with lit-
tle support from WebKit companies; all of them eventually ran out of time
and/or money. For the past year, there has been no active work on We-
bKit’s MathML support. Apple advertises MathML support in Safari while
in practice it is not usable in professional production. Notably, WebKit’s
MathML pages have not been updated in several years and at time of writ-
ing there were 136 open bugs filed under MathML; MathML is also not
included in the recently added “WebKit Web Platform Status” dashboard.
Apple has implemented partial support in its proprietary VoiceOver tech-
nology.

e Chrome/Blink lists MathML as “no longer pursuing”. Blink removed
the code base for MathML that it inherited when forking from WebKit.
The Chrome team has been consistent that support in Blink is not
planned. While negative, it has been the most transparent and consistent
position. In extension, this position applies to Opera, Vivaldi and other
Blink/Chromium-based browsers.

It is worthwhile to note that Chrome and IE/Edge make up 55-75% of today’s
browser market, depending on the metric).

Ultimately, we believe actions speak louder than words: no browser vendor has
worked or is planning to work on implementing MathML.

In addition, unfunded volunteer-driven efforts have repeatedly failed to reach the
80/20 point of the implementations. In 2013, MathJax extensively investigated
ways to reliably fund long-term, third-party MathML browser development, how-
ever the lack of interest from browser vendors made it difficult to pitch this idea to
potential funders.

On the other hand, other components of HTML5 have been either implemented,
revised, or marked as abandoned. In addition, browser layout engines have matured
a great deal and layout has become very reliable across browsers. Where MathJax
originally could not even rely on basic layout such as text widths being handled
correctly, today’s browsers are reliable even to the point of CSS 3 implementations.

http://dev.modern.ie/platform/status/?filter=f3f0000bf&search=math
https://developer.apple.com/safari/features/
https://trac.webkit.org/wiki/MathML
https://trac.webkit.org/wiki/MathML
https://bugs.webkit.org/buglist.cgi?bug_status=UNCONFIRMED&bug_status=NEW&bug_status=ASSIGNED&bug_status=REOPENED&field0-0-0=product&field0-0-1=component&field0-0-2=alias&field0-0-3=short_desc&field0-0-4=status_whiteboard&field0-0-5=content&query_format=advanced&type0-0-0=substring&type0-0-1=substring&type0-0-2=substring&type0-0-3=substring&type0-0-4=substring&type0-0-5=matches&value0-0-0=mathml&value0-0-1=mathml&value0-0-2=mathml&value0-0-3=mathml&value0-0-4=mathml&value0-0-5=%22mathml%22&order=changeddate%20DESC%2Cbug_status%2Cpriority%2Cassigned_to%2Cbug_id&query_based_on=
https://bugs.webkit.org/buglist.cgi?bug_status=UNCONFIRMED&bug_status=NEW&bug_status=ASSIGNED&bug_status=REOPENED&field0-0-0=product&field0-0-1=component&field0-0-2=alias&field0-0-3=short_desc&field0-0-4=status_whiteboard&field0-0-5=content&query_format=advanced&type0-0-0=substring&type0-0-1=substring&type0-0-2=substring&type0-0-3=substring&type0-0-4=substring&type0-0-5=matches&value0-0-0=mathml&value0-0-1=mathml&value0-0-2=mathml&value0-0-3=mathml&value0-0-4=mathml&value0-0-5=%22mathml%22&order=changeddate%20DESC%2Cbug_status%2Cpriority%2Cassigned_to%2Cbug_id&query_based_on=
https://www.webkit.org/status.html
https://www.chromestatus.com/features/5240822173794304
https://en.wikipedia.org/wiki/Usage_share_of_web_browsers#Summary_tables
https://en.wikipedia.org/wiki/Usage_share_of_web_browsers#Summary_tables

TOWARDS MATHJAX V3.0 5

This enables new approaches to math layout. With nascent technologies, a different
path towards native math layout seems feasible.

Web standards. In the past year, MathJax has begun to become more pro-active
regarding web standards development to better fulfill its mission of moving math
and science notation forward on the web. By supporting Peter Krautzberger as
an invited experted to the W3C’s Digital Publishing Interest Group (DPUB IG)
and the W3C’s Math Working Group (Math WG), MathJax is developing new
expertise on use cases, technologies, as well as evolving standards to align with,
while in turn providing feedback to web standards development. In the DPUB IG,
Peter Krautzberger leads the STEM task force. Overall, there is a clear frustration
among STEM web experts regarding the lack of progress for MathML. At the same
time there is interest in exploring pragmatic ways to improve the situation of math
and science on the web, especially in the context of recent developments such as the
Houdini Task Force and modularization efforts in ARTA (such as the DPUB-ARITA
module).

In summary, we believe the improved browser technology landscape as well as our
own progress over the past two years provide an opportunity to re-think Math-
Jax’s core component on a fundamental level. We believe these decisions have to
be connected to MathJax’s mission. We need to re-evaluate the current goal of
native MathML support in browsers and consider shifting the focus towards other
pragmatic goals that help math and science become first class citizens on the web.

GOALS

For a redesign of MathJax’s core component it is crucial to re-evaluate our long-
term direction. This is where we find ourselves at a cross-roads.

A critical problem today is that MathJax generates output that currently can only
replace MathML in the page, not augment it. This means we cannot leverage
partial browser implementations (e.g., implementation of roots or tables) and we
cannot provide a positive feedback loop for browser implementations. In other
words, MathJax’s current design cannot function like a polyfill/prolyfill should
(in the sense of the Extensible Web Manifesto): providing an implementation in
JavaScript that can gradually be replaced with native browser implementations.

The core work: revisiting MathJax’s core component. We need to redesign
MathJax’s modular structure and the core APIs derived from it to improve perfor-
mance, re-use and long-term maintenance of MathJax.

The need to revise MathJax’s modular structure relates to current and future best
practices in web development. While MathJax’s modular extension system has al-
lowed MathJax to gradually upgrade older components as well as develop new, mod-
ern components, the modularity has been “internal” only; MathJax components
cannot be used outside of MathJax and developers have to understand MathJax’s
custom module system and programming model to modify or build components.

We need to revise this to better address the use cases of modern web developers.
To get a rough idea of the complex workflow and tool chain into which MathJax to
fit, consider Table 1.

https://extensiblewebmanifesto.org/

6 PETER KRAUTZBERGER, DAVIDE CERVONE, AND VOLKER SORGE

NEED

MOTIVATION

TOOLS

Scaffold

Build / Automa-
tion

Automation Util-
ities

Dependency
Management
Dynamic Loading

Javascript Pre-

processor

Application

Application Utili-
ties

Test Runner

Test Framework
Test End to End

Test Support
Dom Utilities

JS Utilities

CI

Language

CSS Preproces-
sors
Preprocessors
Libs

CSS Helpers

CSS Frameworks

Several tools. Several ways. Several Prac-
tices. Need to organize, and give some good
foundation - best practices, good design.
Lots of tasks to execute. Compile. Test.
Minify. Concat. Etc.

Tasks that can be put in build the pipeline.

Applications are getting complex. They rely
on several other libraries and frameworks.
Big projects are split among several pieces of
js for the sake of modularization. No all of
them should be loaded at the same time.
The way you organize code in development
time is dierent the way you publish your
code. Need to do some processing in your
javascript les before using them.
Applications on web are getting complex,
need for frameworks that support app devel-
opment.

Several application features that can be nec-
essary (e.g. routing)

Execute and visualize test results

Write tests

‘Write tests for the whole application ow

Support tests and helpers

DOM selection and maniputation, some aux-
iliary functions, need for utilities that make
work simple (and cross-browser)

Clean code, functional programming style,
reactive programming features, helpers and
utilities

Continuous integration, continuous delivery,
continuous deployment

Have a syntactic sugar element, or even com-
pletelly dierent syntax (that in the end turn
into javascript to run in the browser)

yeoman, Seed Projects, Html5Boilerplate,
bootstraps (e.g. Twitter Bootstrap)

grunt gulp, broccoli, component, ake’s (e.g.
Make, Rake, etc.)
minify, uglify, lint, jshint, watch

bower, component, NPM

require, curl, amd.js, async.js

browserift, webpack

angular, backbone, ember, knockout

page, director, crossroads2

karma, saucelabs
jasmine, mocha, qunit
protractor, casperjs,
webdriver

phantomjs, zombie.js, sinon, chai
jquery, zepto, polymer, prototype

nightwatch.js, watir

lodash, underscore, promise, fn.js, q.js, ba-
cons.js, sugar.js, chance.js, moment.js, mi-
cro.js

Any! (e.g. travis ci, jenkins,
semaphore, go, snap)

coeescript, clojurescript, typescript 3

concrete,

sass, less
compass, bourbon
susy, zenGrids, neat, normalize, modernizr,

exbox
boostrap, foundation, skeleton

TABLE 1. From Slide 1-3, “The JavaScript Toolkit 2.0”.

We need to ensure that MathJax fits better into this diverse ecosystem. At the
heart of this problem lie modules.

Originally and for lack of available technology, MathJax had to create its own mod-
ule system, including dynamic module loading mechanisms and webfont detection.
These elaborate internals made MathJax more akin to a full-fledged web framework
rather than a “regular” JavaScript library. In other words, developers had to adapt
to MathJax’s framework rather than having a utility library that they can integrate
into their framework of choice. This made the integration work of developers more
complex than one would expect today.

In the past few years, several module systems (e.g., CommonJS, AMD, UMD) have
given rise to native modules in JavaScript itself (starting with ECMAscript 2015).
The progress we have made on MathJax in 2014/2015 allows us to redesign our
modular structure so as to simplify it and turn more components into independent,
reusable components using modern best practices. Such a redesign must focus on
web developers who need to fine tune the components they ship and integrate them
into modern tool chains.

http://www.slideshare.net/bymarkone/the-javascript-toolkit-20

TOWARDS MATHJAX V3.0 7

We can easily continue to supply compiled packages allowing the average users to
use MathJax as they do today — inserting one line of JavaScript into their header
and “forgetting” about it.

But by making our components easier to reuse outside of MathJax, we fulfill our
mission better, enable developers to use MathJax more flexibly, and lower the
threshold for outside contributors.

Alongside our module structure, we want to simplify our APIs so as to make it easier
for developers to integrate MathJax into their applications. Currently, MathJax
acts more like a framework, with a complex callback, signaling, and queuing system
and several internal optimization methods. The problems MathJax solves this way
are now much more common place in web development and most developers will
have their own tools or frameworks to handle these problems (e.g., reducing paints,
reflows and DOM manipulation). This allows us to simplify those APIs by moving
the burden from MathJax towards developers since they already carry that burden
anyway. At the same time, we avoid MathJax’s own methods from interfering with
the developers’ choices.

To some degree, this kind of change will make MathJax less flexible in certain
use cases (e.g., dynamic adaption to client configuration, output switching, font
switching etc.) and more importantly this will be heavily influenced by the overall
direction discussed below.

To compensate, we can build a developer kit of sample integrations that implement
this old functionality. Ideally, a wider community of developers will share sample
integrations into the most common tools and frameworks as we’ve seen with similar
situations in the past (such as mobile apps or CMS integration).

The key difference for MathJax will be a shift towards making additional flexibility
an opt-in for developers and users, removing negative effects on our core require-
ments. These technical priorities must be governed by our overall design direction.
We evaluated several approaches and identified two main candidates.

Path 1 “Seamless polyfilling”. As mentioned, we need to decide if our mission
should remain focused on enabling browser development. If this remains the focus,
then we should re-design MathJax to provide a positive feedback loop for MathML
implementations. The strategy for this approach would be to become “invisible”
to both users and developers.

This approach would be marked by using newly established webstandards. For
example, we would need to

e use custom elements and shadowDOM to make MathJax output appear as
its underlying MathML,

e design our components to detect partial MathML features and use them
when available (e.g., roots, menclose, mstyle),

e use mutation observers on the MathML lightDOM as new core API,

e so that developers do not interact with MathJax, they just manipulate
MathML in the DOM,

8 PETER KRAUTZBERGER, DAVIDE CERVONE, AND VOLKER SORGE

e make MathJax fast enough so that developers are comfortable to “forget”
about MathJax rendering, i.e., they inject MathML and rendering is seam-
less and non-interfering.

The advantage of this approach lies in the fact that web components has gained
enthusiastic support and the problems MathJax would be facing are to some degree
shared with more developers. Additionally, once even partial MathML implemen-
tations are available, MathJax can improve automatically.

The risks of this approach lie in the complexity of the task. This kind of function-
ality is far more complex than what MathJax does today and it eliminates many
tricks we use in MathJax to ensure high quality and fast rendering speed. This ap-
proach would also have to rely on computationally heavy browser technology (such
as mutation observers, getComputedStyle etc). It is unclear at this point whether
web components can help with accessibility issues related to polyfilling MathML
since custom elements cannot redefine HTML5 elements and assistive technology
would still be exposed to the shadow tree (cf. the latest Shadow DOM working
draft).

The main question is: can we speed up MathJax sufficiently? And would this
modus operandi actually be aligned with web development practices? Finally, this
approach would also eliminate any solutions for environments without JavaScript
as custom elements can only be created using JavaScript.

Path 2 “HTMLS5 rendering”. If leveraging MathML browser implementations
is not the goal, then we should design MathJax to provide a fully-equivalent “in-
terpretation” of MathML in HTML.

For example we would

e design the core component to focus on working independently of the client
context,

e in particular, make server-side processing a first-class use case alongside
client-side processing,

e enrich all output to be at least as powerful as native MathML rendering,

e leverage web standards that enable HTML and SVG output to embed suf-
ficient semantic information and work on improving such standards,

e focus on DOM-independent processing so as to leverage other web tech-
nologies (webworkers, serviceworkers) and development techniques (e.g.,
virtualDOM),

e provide lightweight client-side tools to enhance the pre-generated output.

The advantage of this approach is that MathJax can focus on making its rendering
“just another piece” within an HTML page or SVG document, leveraging regular
HTML5 structures, and integrating well with other content. It would also allow
MathJax to enable more functionality outside the client-side browser, allowing for
pre-processing, in particular improve the situation of MathML in non-JS environ-
ments such as ebooks. Pre-processing would also resolve most performance prob-
lems since no JavaScript processing would be necessary on the client-side browser
(but of course would remain equally possible, e.g., for interactive content).

http://www.w3.org/TR/shadow-dom/#h-assistive-technology
http://www.w3.org/TR/shadow-dom/#h-assistive-technology

TOWARDS MATHJAX V3.0 9

The greatest risk of this approach would be the potential damage for the prospects
of MathML on the web, turning the focus to MathML as a data format for HTML
and SVG. It would also somewhat complicate the interaction with accessibility
tools which, despite lack of (visual) rendering in browsers, have begun to focus
on handling mathematics only as MathML in the DOM; as noted earlier, this
problem exists in either approach. We have reached out to the assistive technology
community as well as the Protocols and Formats Working Group to discuss the
potential of improving related web standards and there seems to be interest from
both sides.

However, if one assumes that browser implementations are unattainable, then the
approach of interpreting MathML in HTML5 can benefit standards development
significantly as it would help identify which features of MathML might be obsolete in
an HTML5 setting and which forms of mathematics are not yet possible in MathML
but possible in a HTML5 setting, e.g., diagramatic content. By providing an easily
extensible model, it could allow for a more dynamic development of mathematics
on the web.

Finally, this approach could identify a minimal set of additions to HTML and
CSS that might simplify such an interpretation of MathML. In particular, it could
inform initiatives such as the recently formed Houdini Project on which elementary
rendering APIs are necessary for mathematical and scientific notation. Ultimately,
this approach could work towards “merging” MathML into HTML rather than work
towards MathML as a separate set of standards.

Moving Forward. After careful consideration of all alternatives and many fruitful
discussion with the MathJax Steering Committee, the MathJax Sponsors, and many
experts in the community, we decided to follow the second path.

It seems difficult to argue that browser vendors will actively implement MathML
natively in the next 5 years, no matter how much MathJax might do to encourage
such implementations. The longer implementations are delayed the less likely it
becomes that native MathML will be realized at all, as HTML, CSS and other
standards of the Open Web Platform continue to evolve without MathML taking
part in such change.

The complexities of the first path pose a serious challenge as they will most likely af-
fect MathJax performance negatively. This could only be compensated with partial
native implementations to eventually take over the difficult layout tasks. However,
without such implementations, MathJax stands to worsen as a product.

The second path moves our focus towards implemented HTML5 standards. With
the new CommonHTML output, developing an “interpretation” of MathML via
HTML/CSS and SVG that is as powerful as native MathML is an attainable goal.
Working towards HTML/CSS improvements that simplify this “interpretation”
seems much more likely to succeed.

This path also makes server-side processing a first class use case for MathJax. The
ability to pre-generate rendering resolves performance issues as JavaScript is no
longer necessary on the client — yet MathJax will still work equally well on the
client.

https://wiki.css-houdini.org/

10 PETER KRAUTZBERGER, DAVIDE CERVONE, AND VOLKER SORGE

Finally, the second path would still allow for client-side enhancements that real-
ize the first approach (i.e., using web components to turn the output into faux
MathML) while the reverse does not seem possible. Overall, native MathML sup-
port, while ideal, seems unrealistic, whereas an “interpretation” of MathML is a
pragmatic approach with equal potential.

Another important consideration is future expandability. It is clear that other
scientific, technical or artistic content will need a more natural representation on
the web. Indeed, there already exist a number of specialist languages for such
content (e.g., CML, MusicXML, PhyloXML) that might push for inclusion in web
content in the future. Similarly, math on the web pushes beyond MathML on
various ends, from geometric representation to computer algebra systems to new
forms of visual expression of mathematical thought.

The MathML experience teaches us that not even inclusion into W3C standards
leads to implementation of specialist languages in browsers. Given that HTML5
is the basis for ebook standards such as ePub3 and mobi/kindle, it also means
that every eBook reader needs to implement the full spec. But if browser vendors
already do not implement the full standard, it is even less likely that developers of
eBook readers will. Consequently, there is always a necessity for polyfill solutions
like MathJax and there is an argument to be made that this will even increase in the
future, with other markup languages reaching maturity. And equally consequently,
any progress towards realizing MathML and mathematical knowledge in general in
HTML and SVG could provide a path for other knowledge domains.

We see a future market in MathJax to provide rendering solutions for these scientific
languages and consequently need a flexible and future proof underpinning. That
means firstly we want to restrict the rendering output to those parts of the web
standard that are widely implemented in all display solutions, i.e. HTML, CSS and
SVG. And secondly, we need a flexible and efficient core system that is based on
modern JavaScript standards and that can be more easily adapted and updated to
future iterations of web applications technology.

METHODS

We want to update our core component and modular infrastructure using current
and future best practices of JavaScript development. The redesign should therefore
also bring about a change in MathJax’s development process.

In this context, it is important to realize that we are considering changes that will
hold back development for a signficant amount of time, most likely a full year.
However, by modularizing MathJax more aggressively and by following a more
dynamic development process, we can release early and often, focusing on smaller
and independent releases of our components that developers can integrate rapidly.
In particular, we will not strive to deliver an equivalent product from the start but
quickly provide incremental releases of individual components.

This change also includes building more on other polyfills and JavaScript compil-
ers/transpilers. This will allow us to develop MathJax for the browser market of
2016 and 2017 rather than the lowest common denominator of 2015.

TOWARDS MATHJAX V3.0 11

Because the web development ecosystem has become very diverse, we are painfully
aware that we cannot hope to keep track of all current and emerging technologies.
That is why we will form a Technical Committee consisting of developers from
our sponsors, our contributors, and other specialists. Building a strong connection
with this dedicated group of developers will guide our design decisions towards the
broadest positive impact.

Finally, we will continue to maintain MathJax 2.x in terms of bug fixes and third
party contributions.

RESOURCES

To make this change, we need to expand our team to permanently have two equal
core contributors. For this, we need to ensure that our development schedule can be
aligned, e.g., in the form of dedicated development sprints. This includes aligning
our work with the members of the technical committee, who we will rely on for
providing feedback during development sprints.

MEASURING SUCCESS

As we pursue a path towards an HTML5 “interpretation”, the primary measure of
success will be how well MathJax can provide a solution for mathematics on the
web that is at least equivalent to native MathML browser implementations, for both
developers and end users and in particular in terms of accessibility. Our internal
approach of using MathML will not change but its role in our rendering is open to
change as we work towards realizing MathML in HTML. We are dedicated to the
Open Web Platform and its standards and our work will continue to be focused on
providing feedback to standards and browser development; therefore progress on
web standards will also be a measure of success.

Rendering speed will naturally be a critical measure, as will be overall functionality
(i.e., MathML coverage and more advanced math and science use case such as
diagrams and responsive rendering).

Finally, a timeline developed by the new team (with input from the technical com-
mittee) will provide further means of tracking progress in the first quarter of 2016.

CONCLUSION

We believe we have reached a point in time where we could and should undertake
significant changes to MathJax’s core component to adapt to a changed landscape.
The nature of these changes depend on a critical decision for the overall direction of
MathJax’s mission — to no longer consider native MathML support in browsers an
achievable goal of MathJax. We believe we have identified the relevant technologies
to successfully make this change and ensure that MathJax greatly improves and
serves the community for the next 5 years.

We have sought out our sponsors and other members of the MathJax community
to ensure we have their input and support for this change. As part of this change,
a group of expert developers will support us as a technical advisory group that will

12 PETER KRAUTZBERGER, DAVIDE CERVONE, AND VOLKER SORGE

advise us in this effort. Thanks to the unanimous support of our MathJax sponsors
we look forward to tackling this change towards greatly improving MathJax as a
long lasting, high quality tool for the entire community.

	Executive Summary
	Introduction
	Background
	MathJax
	Browsers in 2015
	Web standards

	Goals
	The core work: revisiting MathJax's core component
	Path 1 Seamless polyfilling
	Path 2 HTML5 rendering
	Moving Forward

	Methods
	Resources
	Measuring success
	Conclusion

